AP CHEMISTRY SUMMER PACKET
 2023
 MR. PRIDGEN
 Name:

\qquad

Dear Brave Soul,

I pray that you are having an enjoyable and restful summer vacation thus far. Thank you so much for accepting the challenge of AP Chemistry this fall. It will be a fun and exciting year and this summer assignment will help you prepare. We will cover the first three review chapters of the AP Chemistry course work in these packets so that we will have more in class time to prepare for the exam in May. In addition to these first three chapters, you will have to relearn (or learn) your element names and symbols, polyatomic ions, and nomenclature. We will have a quiz on the second full day of class, 8.16 .2023, covering nomenclature. You will also have a more in-depth test at the beginning of the second week of school, 8.21.2023, covering the rest of the information from this packet (sig figs, SI units, chemical math, redon, etc.).

Included on the following page is a table of contents that divides the packet into sections. Most of the sections include tutorials, followed by practice questions. If you feel comfortable with the material, do not feel that you need to read the tutorial part of the section. You are required to do every problem and complete all of the material within this packet, which includes they Key Questions and the Exercises for each section. Section X is extra practice and will not be graded but you will be expected to know all of this information. Section XIII is required but will only be graded for completion. This packet should take you between 4 and 7 hours depending on your comfort with chemistry and your retention from your previous chemistry course. It will be due on the orientation day $(8.11 .2023)$ and will be graded for accuracy (I will have binder clips for each of you to turn in the packet). Please keep track of how long each section took you. At the end of the entire packet is a survey that I would like for you to fill out when you finish.

If you have any difficulties, visit http://bit.ly/PridgenAPChemVideos (you must type it in exactly the same) for some videos that will help you. If you are still struggling, please contact me. I will be checking my email (kpridgen@behs.com) once a week to answer any of your questions. Please resist the temptation to start these at the last minute. These assignments do not require a text, but you should use your sophomore chemistry book if you need extra guidance while I am not around.

Thanks again and have a wonderful summer!

--

In Christ,

Kyle Pridgen
Science Department
Bishop England High School
Table of Contents
I. Important Mono and Polyatomic Ions 4
II. Diatomic Molecules 4
III. Significant Figures 5
Exact vs Inexact 5
Significant Figure Rules 6
Zeros Not Discussed Above 6
Key Questions and Exercises. 7
Rounding Numbers 9
Key Questions and Exercises 9
Using Significant Figures in Addition and Subtraction 10
Key Questions and Exercises. 11
Using Significant Figures in Multiplication and Division 11
Key Questions and Exercises. 12
IV. Système International (d'unités) 14
Derived SI Units 14
Key Questions and Exercises. 15
Factor-Label Method. 16
Key Questions and Exercises. 17
V. Ionic Compounds and Acids 20
Compounds Containing Polyatomic Ions 20
Key Questions 21
Nomenclature of Ionic Compounds 21
Key Questions 21
Nomenclature of Acids 23
Key Questions and Exercises. 23
VI. Covalent Compounds 25
Binary Molecular Nomenclature 25
Key Questions and Exercises. 26
VII. Atomic Mass and Moles 29
Average Atomic Mass. 29
Key Questions and Exercises 29
\qquad
VIII. The Mole Concept 33
IX. Balancing Redox Reactions 37
Rules to Assign Oxidation Numbers 37
Key Questions and Exercises. 38
X. Chemical Nomenclature Flow Chart 39
Practice Exercises 40
XI. Elements and Symbols to Memorize. 42
XII. Ion Sheet to Memorize 43
XIII. General Chemistry Review 44
XIV. Periodic Table 55
XV. Equation Sheet 56
XVI. End of Packet Survey 58
\qquad
I. Important Mono and Polyatomic lons (these are the most common, look at page $\mathbf{4 3}$ for ions to memorize)

Name	Symbol	Name	Symbol
Hydrogen ion	H^{+}	Fluoride ion	F^{-}
Lithium ion	Li^{+}	Chloride ion	Cl^{-}
Sodium ion	Na^{+}	Bromide ion	Br^{-}
Potassium ion	K^{+}	lodide ion	I^{-}
Copper (I) ion	Cu^{+}	Hydroxide ion	OH^{-}
Silver ion	Ag^{+}	Bicarbonate ion	HCO_{3}^{-}
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	Hypochlorite ion	OCl^{-}
Ammonium ion	NH_{4}^{+}	Nitrate ion	$\mathrm{NO}_{3}{ }^{-}$
Magnesium ion	Mg^{2+}	Ca^{2+}	Thiocyanate ion
Calcium ion	Ba^{2+}	NO_{2}^{-}	
Barium ion	Zn^{2+}	SCN^{-}	
Zinc ion	Cd^{2+}	Hg^{2+}	Cu^{2+}

II. Diatomic Molecules (rarely exist alone in nature)

Hydrogen	H_{2}
Nitrogen	N_{2}
Oxygen	O_{2}
Fluorine	F_{2}
Chlorine	Cl_{2}
Bromine	Br_{2}
lodine	I_{2}

If they are alone, they will have the word singlet in front of them
e.g. singlet oxygen $=0$
\qquad

III. Significant Figures - Start Time:

\qquad End Time: \qquad

Exact vs Inexact

What are significant figures, what do they indicate and how are they used in addition, subtraction, multiplication and division?
There are two kinds of numbers in the world:

Exact Numbers

- There are exactly 12 eggs in a dozen.
- Most people have exactly 10 toes and 10 fingers.
- 1 meter $=100$ centimeters
- 1 yard = 36 inches
- 1 dollar $=100$ cents
- 1 kilometer $=1000$ meters

Inexact Numbers

- Any measured value
- Use of a 10 mL graduate cylinder to measure the volume of a solution might give a volume of 8.81 mL (3 sig figs) or a less precise volume of 8.7 mL with a 100 mL graduated cylinder
- An analytical balance might find the mass of a pencil to be 12.1403 g (6 sig figs), while a centigram balance might find it to weigh 12.13 g (4 sig figs)

The number of digits, i.e. significant figures, reported for a measured value conveys the quality of the measurement and hence, the quality of the measuring device. It is important to use significant figures correctly when reporting a measurement so that it does not appear to be more (or less) precise than the equipment used to make the measurement allows. We can achieve this by controlling the number of digits, or significant figures, used to report the measurement.

In this course and in others, you must use correct significant figures in reporting your results. Laboratory measuring instruments have their limits, just as your senses have their limits. One of your tasks, in addition to learning how to use various measuring instruments properly, will be to correctly determine the precision of the measuring devices that you use and to report all measured and calculated values to the correct number of significant figures.

Significant Figure Rules

There are three rules on determining how many significant figures are in a number:

1. Non-zero digits are always significant. (see page 4 for details)
2. Any zeros between two significant digits are significant. (see page 5 for details)
3. A final zero or trailing zeros in the decimal portion ONLY are significant. (see page 5)

Focus on these rules and learn them well. They will be used extensively throughout every Chemistry and Physics course you take in high school and college. You would be well advised to do as many problems as needed to nail the concept of significant figures down tight and then do some more, just to be sure.

Please remember that, in science, with the exception of a few numbers that are defined and hence exact, all numbers are based upon measurements. Since all measurements are uncertain, we must only use those numbers that are meaningful. A common ruler cannot measure something to be 22.4072643 cm long. Not all of the digits have meaning (significance) and, therefore, should not be written down. In science, only the numbers that have significance (derived from measurement) are written.

Rule 1: Non-zero digits are always significant.

Hopefully, this rule seems rather obvious. If you measure something and the device you use (ruler, thermometer, triple-beam balance, etc.) returns a number to you, then you have made a measurement decision and that ACT of measuring gives significance to that particular numeral (or digit) in the overall value you obtain.

Hence a number like 26.38 would have four significant figures and 7.94 would have three. The problem comes with numbers like 0.00980 or 28.09 .

Rule 2: Any zeros between two significant digits are significant. (i.e. "sandwiched" zeroes are significant)
Suppose you have a measured value like 406. By the first rule, above, the 4 and the 6 are significant. However, to make a measurement decision on the 4 (in the hundred's place) and the 6 (in the one's place), you HAD to have made a decision on the ten's place. The measurement scale for this number would have calibration marks for the hundreds and tens places with an estimation made in the "ones" place-hence, significant figures indicate the number of digits known with certainty (e.g. the $1^{\text {st }}$ two digits in 406) and one that is an estimate (e.g. the 6 in 406). Such a measuring measurement scale would look like this:

Figure 1. A measuring scale that allows one to use three significant figures

Rule 3: A final zero or trailing zeros in the decimal portion ONLY are significant.

This rule causes the most difficulty with students. Here are two examples of this rule with the zeros this rule affects in bold font:

$$
\begin{aligned}
& 0.00500 \\
& 0.03040
\end{aligned}
$$

Here are two more examples where the significant zeros are in bold font:

$$
\begin{aligned}
& 2.30 \times 10^{-5} \\
& 4.500 \times 10^{12}
\end{aligned}
$$

Zeros Not Discussed Above

Zero Type \#1. Space holding zeros on numbers less than one.
Here are the first two numbers used under rule 3, above. The digits that are NOT significant are underlined:

$$
\begin{aligned}
& 0 . \underline{00500}=5.00 \times 10^{-3} \\
& 0 . \underline{0} 3040=3.040 \times 10^{-2}
\end{aligned}
$$

The underlined zeroes serve only as space holders—their function is to locate the decimal point. They DO NOT involve measurement decisions. The non-significant zeros disappear upon writing the numbers in scientific notation.

Zero Type \#2. The zero to the left of the decimal point on numbers less than one.
When a number like 0.00500 is written, the very first zero (to the left of the decimal point) is put there by convention. Its sole function is to communicate unambiguously that the decimal point is a decimal point. If the number were written like this, .00500 , there is a possibility that the decimal point might be mistaken for a period. Many students omit that zero. They should not.

Zero Type \#3. Trailing zeros in a whole number without a decimal point are not significant.

$$
200 \text { has only one significant figure } \quad 25,000 \text { has two sig figs }
$$

This is based on the way each number is written. When whole number are written as above, the zeros, BY DEFINITION, did not require a measurement decision, thus they are not significant. However, it is entirely possible that 200 really does have two or three or more significant figures. If it does, it will be written differently. Typically, scientific notation, underlining or the use of a decimal point is used for this purpose.

2 significant figures: $2 \underline{0} 0$	or	2.0×10^{2}
3 significant figures: 200.	or	2.00×10^{2}
4 significant figures: 200.0	or	2.000×10^{2}

How will you know how many significant figures are in a number like 200 ? In a problem without a scientific context, you should be told. If you were doing an experiment, the context of the experiment and its measuring device would tell you how many significant figures to report to people who read the report of your work.

Exact Numbers

Exact numbers, such as the number of people in a room, have an infinite number of significant figures. Exact numbers are counting up how many of something are present, they are not measurements made with instruments. Another example of this are defined numbers, such as 1 foot $=12$ inches. There are exactly 12 inches in one foot. Therefore, if a number is exact, it DOES NOT affect the precision of a calculation. Some more examples:

There are 100 years in a century.
2 molecules of hydrogen react with 1 molecule of oxygen to form 2 molecules of water.
1 kilogram = 1000 grams
Each molecule of methane gas, CH_{4}, contains exactly 1 carbon atom and 4 hydrogen atoms.
Interestingly, the speed of light is now a defined quantity. By definition, the value is $299,792,458$ meters per second.

A Brief Aside

There might come an occasion in chemistry when you are not exactly sure how many significant figures are called for. Suppose the textbook mentions 100 mL . You look at this and see only one significant figure. However, an experienced chemist would know that 100 mL can be easily measured to 3 or 4 significant figures. Why then doesn't the textbook (or the professor) write 100.0 (for 4 sig figs) or 1.00×10^{2} (for 3 sig figs)?
So, a brief word of advice: If you haven't a clue as to how many significant figures to use, try using three or four. These are reasonable numbers of significant figures for most chemical activities.

Key Questions

1. What kind of numbers are exact numbers? Give at least one original example.
2. What kind of numbers are inexact numbers? Why? Give at least one original example.
\qquad
3. What is your understanding of significant figures: What are significant figures, when should they be used and what function do they serve?

Figure 2. A hypothetical measuring scale
4. What values would you record for measurements A, B and C if each measurement fell on the line each arrow points to in figure 2, above? How many sig figs should each measurement have?

$$
\mathrm{A}=\square \quad \mathrm{B}=\square \quad \mathrm{C}=
$$

5. Later in the quarter you will be asked to measure out accurately about 3 grams of an unknown salt with a milligram electronic balance (a balance that measures out to the nearest milligram, 0.001 g). What mass of salt should you measure out? How many significant figures should you record?
6. Suppose you are asked to measure out about 25 mL of deionized water as accurately as you can.
a.) What measuring device would you use? \qquad
b.) How much water should you measure out? \qquad
c.) How many significant figures would you report? \qquad

Exercises

7. How many significant figures are there in each of the following numbers? Record your responses in the spaces provided and circle the digits that are significant.
a.) 3.0800 \qquad f.) 3.200×10^{9}
b.) 0.00418
g.) 250
\qquad
c.) 7.09×10^{5}
h.) $780,000,000$
\qquad
i.) 0.0101 \qquad
d.) 91,600
j.) 0.00800
e.) 0.003005 \qquad
\qquad

Rounding Numbers

In numerical problems, it is often necessary to round numbers to the appropriate number of significant figures. Consider the following examples in which each number is rounded so that each of them contains 4 significant figures. Study each example and make sure you understand why they were rounded as they were:

Original number	\rightarrow	Number rounded to 4 sig figs
41,008	\rightarrow	41,010
1.25624	\rightarrow	1.256
0.017837	\rightarrow	0.01784
120	\rightarrow	120.0
127.450	\rightarrow	127.4
127.4501	\rightarrow	127.5
127.550	\rightarrow	127.6
127.25000	\rightarrow	127.2
127.25001	\rightarrow	127.3
127.35	127.4	

Key Questions

8. Summarize the rounding rule(s) used in the first three examples, above.
9. Summarize the rounding rule(s) used in the last six examples (i.e. those using 127), above. This rule is often referred to as the "odd - even" rule. (Hint: look at the value of the tenths place)

Exercises

10. Round the following numbers to four significant figures.
a.) $2.16347 \times 10^{5}=$
d.) $7.2518=$
b.) $4.000574 \times 10^{6}=$
e.) $375.6523=$
c.) $3.6825=$
f.) $21.865001=$
11. Round off each number to the indicated number of significant figures (sf).
a.) 231.554 (to 2 sf) =
e.) 249,441 (to 3 sf) $=$
b.) $0.00845($ to 2 sf$)=$
f.) 0.00250122 (to 3 sf) $=$
\qquad
c.) $150,000($ to 1 sf$)=$
g.) $12,049,002$ (to 4 sf) $=$
d.) 0.0023 (to 3 sf) $=$
h.) $0.00200210($ to 3 sf$)=$

Using Significant Figures in Addition and Subtraction

Did you know that 30,000 plus 1 does not always equal 30,001? In fact, 30,000 +1 is sometimes equal to 30,000 ! You may find this hard to believe, but let's examine this.

Recall that zeros in a number are not always significant. Knowing this makes a big difference in how we add and subtract. For example, consider a swimming pool that can hold 30,000 gallons of water. If I fill the pool to the maximum fill line and then go and fill an empty one-gallon milk jug with water and add it to the pool, do I then have exactly 30,001 gallons of water in the pool? Of course not. I had approximately 30,000 gallons before and after I added the additional gallon because " 30,000 gallons" is not a very precise measurement. So, we see that sometimes $30,000+1=30,000$!

In mathematical operations involving significant figures, the answer is reported in a way that reflects the reliability of the least precise number. An answer is no more precise that the least precise number used to get the answer. Imagine a team race where you and your teammates must finish together at the same time. Who dictates the speed of the team? Of course, the slowest member of the team. Your answer cannot be MORE precise than the least precise measurement.

Use the "decimal rule" when adding and subtracting numbers:

For addition or subtraction, the answer must be rounded off to contain only as many decimal places as are in the value with the least number of decimal places.

WARNING!! The rules for addition/subtraction are different from those of multiplication/division. A very common student error is to swap the two sets of rules. Another common error is to use just one rule for both types of operations.

Example \#1. $\quad 350.04+720=1070.04=1070$

This number is precise to the hundredths place.

The answer can only be as precise as the least precise number in the operation. Hence the answer is rounded off to the tens place since the tens place is less precise than the hundredths place.

Example\#2. 7000-1770 = 5230 = 5000

The answer can only be as precise as the least precise number in the operation. Hence the answer is rounded off to the thousands place since the thousands place is less precise than the tens place.
\qquad

Key Questions

12. Consider example \#1 from above. Indicate in the spaces below the number of significant figures (sf) for each number in the problem.

Should the number of significant figures be considered when adding or subtracting measured numbers? Explain
13. When you add and subtract numbers, how do you identify the first uncertain number in the result?

Exercises

Record the answer before and after rounding off for each problem below.
14. $3.461728+14.91+0.980001+5.2631=$ \qquad $=$ \qquad
15. $23.1+4.77+125.39+3.581=$ \qquad $=$ \qquad
16. $22.101-0.9307=$ \qquad $=$ \qquad
17. $0.04216-0.0004134=$ \qquad $=$ \qquad
18. 564,321-264,321 = \qquad $=$ \qquad

Using Significant Figures in Multiplication and Division

A chain is no stronger than its weakest link-that is, an answer is no more precise that the least precise number used to get the answer.

Use the "Chain Rule" when multiplying and dividing measured numbers:
When measurements are multiplied or divided, the answer can contain no more significant figures than the number with the fewest number of significant figures. This means you MUST know how to recognize significant figures in order to use this rule.

To round correctly, follow these simple steps:

1) Count the number of significant figures in each number.
2) Round your answer to the least number of significant figures.
\qquad

Example \#1.

Example \#2.

Multi-Step Calculations: Keep at Least One Extra Significant Figure in Intermediate Answers

When doing multi-step calculations, keep at least one more significant figure in intermediate results than needed in your final answer. For example, if a final answer requires two significant figures, then carry at least three significant figures in all calculations. If you round-off all your intermediate answers to only two digits, you are discarding the information contained in the third digit, and as a result the second digit in your final answer might be incorrect. This phenomenon is known as "roundoff error." Avoid rounding errors by carrying at least on extra sia fig throughout a multi-step calculation and then round off to the correct number of sig figs at the very end.

Key Questions

19. When you multiply and divide numbers, what is the relationship between the number of significant figures in the result and the number of significant figures in the numbers you are multiplying or dividing?

Exercises

Record the answer before and after rounding off for each problem below.
20. $\left(3.4617 \times 10^{7}\right) \div\left(5.61 \times 10^{4}\right)=$ \qquad $=$ \qquad
21. $\left[\left(9.714 \times 10^{5}\right)\left(2.1482 \times 10^{9}\right)\right] \div\left[(4.1212)\left(3.7792 \times 10^{5}\right)\right]$
(Watch your order of operations on this problem!)
22. $\left(4.7620 \times 10^{15}\right) \div\left[\left(3.8529 \times 10^{12}\right)\left(2.813 \times 10^{7}\right)(9.50)\right]$
23. $[(561.0)(34,908)(23.0)] \div[(21.888)(75.2)(120.00)]$
=
\qquad
= \qquad
$=$ \qquad
\qquad
= \qquad
= \qquad
\qquad
Summer Packet
24. Carry out each of the following calculations. Check that each answer has the correct number of significant figures and the correct units of measure.
a.) $\frac{2.420 g+15.6 g}{4.8 g}=$
b.) $\frac{7.87 \mathrm{~g}}{16.1 \mathrm{~mL}-8.44 \mathrm{~mL}}=$
c.) $\quad V=\pi r^{2} h \quad$ where $r=6.23 \mathrm{~cm}$ and $h=4.630 \mathrm{~cm}$ $V=$
d.) $\frac{8.32 \times 10^{7} \mathrm{~g}}{\frac{4}{3}(3.1416)\left(1.95 \times 10^{2} \mathrm{~cm}\right)^{3}}=$

Note: $4 / 3$ is an exact number!
e.) $E_{k}=\frac{1}{2} m v^{2}=\frac{\left(1.84 \times 10^{2} \mathrm{~g}\right)(44.7 \mathrm{~m} / \mathrm{s})^{2}}{2}=$
f.) $\frac{\left(1.07 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right)^{2}\left(2.6 \times 10^{-3} \frac{\mathrm{~mol}}{\mathrm{~L}}\right)}{\left(8.35 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}\right)\left(1.48 \times 10^{-2} \frac{\mathrm{~mol}}{\mathrm{~L}}\right)^{3}}=$
\qquad

IV. Système international (d'unités) - Start Time:

\qquad End Time: \qquad
A series of international conferences on weights and measures has been held periodically since 1875 to refine the metric system. At the $11^{\text {th }}$ conference held in France in 1960, a new system of units known as the International System of Units (abbreviated SI in all languages) was proposed as a replacement to the metric system. The five of the seven base units for the SI system are given in Table 1—missing from the table are electric current (ampere) and luminous intensity (candela), units that aren't of interest to us right now. You will need to memorize the base unit and its symbol for each of Tables $1 \& 2$ as they will be used extensively this year in AP Chem.

Table 1. SI base units and their symbols

Physical Quantity	Name of base unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	Kelvin	K
Amount of substance	mole	mol

Derived SI Units

The units of every measurement in the SI system, no matter how simple or complex should be derived from one or more of the seven base units. For example, the preferred unit for volume is the cubic meter, m^{3}, because volume has units of length cubed and the SI unit for length is the meter. Strict adherence to SI units would require changing directions such as "add 250 mL of water to a 1-Liter beaker" to add 0.00025 cubic meters of water to an $0.001 \mathrm{~m}^{3}$ container. Because of this, a number of units that are not strictly acceptable under the SI convention are still in use. Some of the common nonSI units in common in use are in Table 2.

Table 2. Non-SI units in common use.

Physical Quantity	Name of base unit	Symbol
Volume	liter	L
Temperature	degree Celsius, Kelvin	${ }^{\circ} \mathrm{C}, \mathrm{K}$
Concentration	molarity	M
Pressure	Atmosphere, torr $=\mathrm{mmHg}$	atm, torr, mmHg

Table 3. Common decimal prefixes used with SI units of measure that should be memorized

Prefix	Prefix Symbol	Meaning	Exponential Notation
Mega	M	million	1×10^{6}
Kilo	k	thousand	1×10^{3}
Centi	c	hundredth	1×10^{-2}
Milli	m	thousandth	1×10^{-3}
Micro	μ	millionth	1×10^{-6}
Nano	n	billionth	1×10^{-9}

\qquad

Note the following examples:

- "milli" means one-thousandth; so a milliliter (symbol: mL) is one thousandth of a Liter and it takes 1000 mL to make 1 L ; therefore $1 \mathrm{~L}=1000 \mathrm{~mL}$
- "kilo" means one thousand; so "kilogram" (kg) means one thousand grams: $1 \mathrm{~kg}=1000 \mathrm{~g}$. One millionth of a gram would be represented by one microgram $(\mu \mathrm{g}): 1 \mathrm{Pg}=10^{-6} \mathrm{~g}$
It takes one million micrograms to equal one gram: $10^{6} \mu \mathrm{~g}=1 \mathrm{~g}$
- one centimeter $(1 \mathrm{~cm})$ is equal to 0.01 m because one cm is "one hundredth of a meter":
$1 \mathrm{~cm}=0.01 \mathrm{~m}=10^{-2} \mathrm{~m}$

Key Questions

1. How many milligrams are there in one kilogram?
2. How many meters are in 21.5 km ?
3. Is it possible to answer this question: How many mg are in one km? Explain.
4. a.) What is the difference between a Mm and a mm?
b.) Which is larger 1.0 Mm or 1.0 mm ? Explain.
5. Complete the table below by indicating what physical quantity each measurement is measuring.

Measurement	Physical Quantity Measured
$1.33 \mathrm{~m}^{3}$	
298.6 K	
3.47 L	
$44 \mu \mathrm{~g}$	
8.75 mm	
760 torr	

Measurement	Physical Quantity Measured
$22.8^{\circ} \mathrm{C}$	
2.0 M	
3.8 atm	
78.4 mL	
18.3 cm	
44.8 ng	

\qquad

The Factor-Label Method

In scientific measurements, units usually follow the numerical value. When mathematically manipulating scientific measurements, you will often need to convert from one unit to another. When this is done, you must multiply what is given by one. In the Factor-Label Method (also called "dimensional analysis"), we multiply what is given by one or more conversion factors. In a conversion factor, what is in the numerator must be equivalent to what is in the denominator (otherwise, you're not multiplying by one!). You must apply conversion factors such that the units cancel appropriately.

Therefore, you will constantly be asking the questions: "What units do I have? Is it in the numerator or in the denominator? What units can I convert to from what I have?"

Units you have but no longer want will be written in the conversion factor on the opposite side of the division bar.

For example, if the units you have but want to convert from are in the numerator, those units will be put in the denominator of the conversion factor.

Example 1. Using more than one conversion factor
By definition, 1 inch is equivalent to 2.54 centimeters, 1 foot is equivalent to 12 inches, and 1 mile is equivalent to 5280 feet. How many kilometers are in a mile?

\qquad

Example 2. Conversion factor raised to a power
The density of isopropyl alcohol is 6.56 pounds per gallon. What is the density of isopropyl alcohol in grams per cubic centimeter? ($1 \mathrm{~kg}=2.205 \mathrm{lb}, 1 \mathrm{gal}=3.785 \mathrm{~L}, 1 \mathrm{~L}=1 \mathrm{dm}^{3}$)

Key Questions

6. What in the numerator of a conversion factor must be equivalent to what is in the denominator of the conversion factor. Explain why.
7. Consider the exercise: "How many seconds are there in 50 minutes?" Suppose it was solved in the following way:
8. $\min \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=0.83 \mathrm{~s}$
a.) Is the answer reasonable? Explain.
b.) Comment on how the units were handled. What "rule" of the model (the factor-label method) was broken in the above solution?
\qquad

Exercises

Instructions: Show your work using the factor-label method. Circle your answers and use correct units and significant figures for all questions-no work, no credit. Use the table of SI - English conversion factors on the inside back cover of your text as needed.
8. Perform the following unit conversions Show your work in each case using the factor-label method. Circle your answers and use correct sig figs.
a.) $15.60 \mathrm{~cm}=$?? m
b.) $41.0 \mathrm{~kg}=? ?$
c.) $9.2 \mathrm{~mL}=$? ? $\mu \mathrm{L}$
d.) $9.16 \times 10^{-5} \mathrm{~m}=? ? \mathrm{~nm}$
9. The distance between two adjacent peaks on a wave is called the wavelength. The wavelength of visible light determines its color.
a.) The wavelength of a beam of green light is 545 nm . What is its wavelength in meters?
b.) The wavelength of a beam of red light is 683 nm . What is its wavelength in inches?
10. A home fashions designer from Europe comes to the United States and decides to purchase some gorgeous fabric that she knows she cannot find back in her home town. She asks the salesperson at the fabric store to cut $36 \mathrm{~m}^{2}$ of the material. The salesperson unfortunately does not have a measuring tape that gives meters, but she has one that measures yards ($1 \mathrm{yd}=3 \mathrm{ft}$). How many square yards does the salesperson need to cut?
\qquad
11. One manufacturer boasts that their car offers a gas mileage of $32 \mathrm{mi} /$ gal. A European manufacturer advertises that their car has a gas mileage of $15 \mathrm{~km} / \mathrm{L}$. Which car would be more economical to operate on the basis of gas mileage? Justify your answer with the appropriate calculation(s). (1 gal $=3.785 \mathrm{~L})$
12. The volume of a certain bacterial cell is $1.72 \mu \mathrm{~m}^{3}$.
a.) What is the cell's volume in cubic millimeters, mm^{3} ?
b.) What is the volume in liters of 1.0×10^{5} of these bacterial cells?
13. An Olympic-size pool is 50.0 m long and 25.0 m wide.
a.) How many gallons of water (assume $d_{\text {water }}=1.00 \mathrm{~g} / \mathrm{mL}$) are needed to fill the pool to an average depth of 4.8 ft ?
b.) What is the mass in kg of water in the pool?
14. Nutritional tables give the potassium content of a standard apple (about 3 apples per pound, lb.) as 159 mg .

How many grams of potassium are in 4.25 kg of apples? ($1 \mathrm{lb}=453.592 \mathrm{~g}$)
\qquad
V. Ionic Compounds and Acids - Start Time: \qquad End Time: \qquad

Compounds Containing Polyatomic Ions

In addition to monatomic ions, there are polyatomic ions. Within a polyatomic ion, each atom is connected to one or more atoms of the same polyatomic ion. Such connected atoms are covalently bound to each other. Atoms connected by a covalent bond share electrons with each other (as opposed to neighboring cations and anions, in which electrons had been transferred from the former to the latter species).

Table 1. Common polyatomic ions. See page 43 for a table of the ions that you need to know in this class.

Cations:	$\mathrm{NH}_{4}{ }^{+}$	Ammonium	$\mathrm{Hg}_{2}{ }^{\text {2+ }}$	Mercury (I)
	$\mathrm{H}_{3} \mathrm{O}^{+}$	Hydronium		
Anions:	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}$	Acetate	OH^{-}	Hydroxide
	$\mathrm{NH}_{2}{ }^{-}$	Amide	ClO^{-}	Hypochlorite
	N^{3-}	Azide	$\mathrm{NO}_{3}{ }^{-}$	Nitrate
	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	Oxalate
		(or bicarbonate)	$\mathrm{O}_{2}{ }^{2-}$	Peroxide
	$\mathrm{BO}_{3}{ }^{\text {- }}$	Borate	$\mathrm{MnO}_{4}{ }^{-}$	Permanganate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate	ClO_{4}^{-}	Perchlorate
	$\mathrm{C}_{2}{ }^{2-}$	Carbide	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate	$\mathrm{SiO}_{4}{ }^{4-}$	Silicate
	$\mathrm{CrO}_{4}{ }^{\text {- }}$	Chromate	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate
	$\mathrm{OCN}{ }^{-}$	Cyanate	$\mathrm{O}_{2}{ }^{-}$	Superoxide
	CN^{-}	Cyanide	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	Thiosulfate
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate	I_{3}	Triodide

Compounds composed of polyatomic ions form crystals with structures similar to that for compounds of monatomic ions - cations and anions stack on top of each other in a periodic array. Suppose we looked into a crystal of $\mathrm{Hg}_{2} \mathrm{I}_{2}$, mercury (I) iodide. We would find planes containing the clusters of ions as shown on the right.

Figure 1. A section of a crystal of mercury (I) iodide, $\mathrm{Hg}_{2} \mathrm{I}_{2}$
\qquad

Key Questions

1. What kinds of bonding exist in mercury (I) iodide?
2. Why is the formula for mercury (I) iodide " $\mathrm{Hg}_{2} \mathrm{l}_{2}$ " and not simply " $\mathrm{Hg} \mid$ "?

Nomenclature of Ionic Compounds

Formula	Unambiguous Name	Formula	Unambiguous Name
LiF	lithium fluoride	$\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	manganese(II) phosphate
$\mathrm{Na}_{2} \mathrm{O}$	sodium oxide	MnPO_{4}	manganese(III) phosphate
ZnS	zinc sulfide	$\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$	copper(II) iodate
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	aluminum nitrate	SnI_{2}	tin(II) iodide
$\mathrm{NH}_{4} \mathrm{NO}_{2}$	ammonium nitrite	$\mathrm{Hg}_{3} \mathrm{~N}_{2}$	mercury(II) nitride
MgSO_{3}	magnesium sulfite	$\mathrm{Hg}_{2} \mathrm{SO}_{4}$	mercury(I) sulfate
$\mathrm{K}_{3} \mathrm{AsO}_{4}$	potassium arsenate	PbSeO_{4}	lead(II) selenate

Key Questions

3. The name of an ionic compound typically consists of two words separated by a space. Is the first word in the name of an ionic compound that of the cation or that of the anion? Is the second word that of the cation or that of the anion?
4. Look at the examples in the Model, paying attention to the differences between compounds with anions having similar names (e.g., nitride versus nitrate versus nitrite; sulfide versus sulfate versus sulfite; iodide versus iodate).
a. What is the difference between an anion whose name ends in -ide and an anion whose name ends in -ate (or -ite for that matter)? (i.e., What does an -ate anion have that an -ide anion does not?)
b. What is the charge (both magnitude and sign) of the nitrate anion? Based on the formula of ammonium nitrite, what is the charge of the nitrite anion?
\qquad
c. What is the charge (both magnitude and sign) of the sulfate anion? Based on the formula of magnesium sulfite, what is the charge of the sulfite anion?
d. In general, if you've memorized the formulas of polyatomic anions with names ending in -ate, you need not memorize the formulas of the corresponding polyatomic anions ending in -ite. In going from -ate to -ite (e.g., from nitrate to nitrite, or from sulfate to sulfite), what happens to the formula (both in terms of the number of each type of atom in the ion and the overall charge)?
e. There is a polyatomic ion called "phosphite". Given that the formula of the phosphate ion is $\mathrm{PO}_{4}{ }^{3-}$, what is the formula (including the charge) of the phosphite ion?
5. Phosphorous and arsenic are in the same column on the Periodic Table. Elements in the same "family" or "Group" will very often have similar chemical reactivities. Since there is a polyatomic ion known as "phosphate", it should not be surprising that there is also an "arsenate". What is the formula for the polyatomic anion called "tellurite"? Hint: tellurium, Te, is in the same group on the periodic table, group VIA, as sulfur.
6. LiF is not "lithium (I) fluoride" and it would be ambiguous to refer to $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ as "manganese phosphate".
a. What does the Roman numeral in parentheses after the name of a metal tell the reader?
b. When should the Roman numeral in parentheses after the name of a metal be written?
7. a. What identifies the compound $\mathrm{Sb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ as an ionic compound?
b. Keeping in mind that antimony cations could have more than one possible charge, what is the unambiguous name of $\mathrm{Sb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
\qquad

Nomenclature of Acids

Formula	Unambiguous Name	Formula	Unambiguous Name
HCl	hydrochloric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
$\mathrm{H}_{2} \mathrm{~S}$	hydrosulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	sulfurous acid
HCN	hydrocyanic acid	HClO_{4}	perchloric acid
		HClO_{3}	chloric acid
		HClO_{2}	chlorous acid
		HClO^{2}	hypochlorous acid

Key Questions

8. What are the names of the anions in hydrochloric acid, hydrosulfuric acid, and hydrocyanic acid?

Hydrochloric acid

Hydrosulfuric acid \qquad

Hydrocyanic acid
b. What common suffix do these anions share?
9. a. What are the names of the anions in sulfuric acid and chloric acid?

Sulfuric acid \qquad Chloric Acid \qquad
b. What common suffix do these anions share?
10. a. What are the names of the anions in sulfurous acid and chlorous acid?

Sulfurous acid \qquad Chlorous Acid \qquad
b. What common suffix do these anions share?
11. Refer back to Key Questions 8, 9, and 10. In your own words, summarize the rules for... a. when the hydro- prefix and -ic suffix is used when naming an acid.
\qquad
b. when only the -ic suffix is used in naming an acid.
c. when only the -ous suffix is used in naming an acid.
12. What is the name of the polyatomic anion in each of the following acids?
a. Perchloric acid \qquad
b. Hypochlorous acid \qquad

Elements in the same "family" (i.e., group or column of the Periodic Table) will very often have similar chemical reactivities. Since there is an acid known as "chloric acid", it should not be surprising that there is also be a "bromic acid". Write the formulas for the following acids.
a. perbromic acid \qquad
c. bromous acid
b. bromic acid
d. hypobromous acid \qquad

Exercises

Provide the correct, unambiguous name for each of the following. Acids are indicated if followed by (aq), meaning in aqueous solution-i.e. dissolved in water.
13. HgS
14. $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
15. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
16. BaO
17. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
18. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$19 \mathrm{HCl}(\mathrm{g})$
20. $\mathrm{HClO}(\mathrm{aq})$
21. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
22. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Provide the correct formula for each of the following:

23. Mercury (I) nitrite	27. Sodium dihydrogen phosphate
24. Iron (III) nitride	28. Phosphorous acid
25. Strontium sulfite	29. Copper (I) hydrogen phosphate
26. Manganese (II) phosphite	30. Hydrofluoric acid

\qquad
VI. Covalent Compounds - Start Time: \qquad End Time: \qquad

Binary Molecular Nomenclature

There are several compounds that are all oxides of nitrogen. They are:
Representation

The atoms around a central atom repel each other, so there is an upper limit to how many bonds a central atom may have. As the central atom becomes larger, it allows more atoms to surround it without these atoms repelling each other. A number of examples of molecules having several covalent bonds are:
\qquad

Key Questions

1. From the Model, what is meant by "binary molecular compound"?
\qquad
2. Classify the elements in the compounds presented in the Model as metals (\boldsymbol{M}), nonmetals (\boldsymbol{N}), or semimetals (metalloids) (S). The elements below are presented in order of increasing atomic number. Circle your answers below.

Nitrogen: $\underline{\boldsymbol{M}}$ or $\underline{\boldsymbol{N}}$ or $\underline{\boldsymbol{S}}$?

Oxygen: \underline{M} or \underline{N} or \underline{S} ?

Fluorine: $\underline{\boldsymbol{M}}$ or $\underline{\boldsymbol{N}}$ or $\underline{\boldsymbol{S}}$?

Sulfur: $\quad \underline{M}$ or \underline{N} or \underline{S} ?

Selenium: $\underline{\boldsymbol{M}}$ or $\underline{\boldsymbol{N}}$ or $\underline{\boldsymbol{S}}$?

Antimony: \underline{M} or $\underline{\boldsymbol{N}}$ or $\underline{\boldsymbol{S}}$?

Tellurium: $\underline{\boldsymbol{M}}$ or $\underline{\boldsymbol{N}}$ or $\underline{\boldsymbol{S}}$?
lodine: $\quad \underline{M}$ or \underline{N} or \underline{S} ?
b. When elements belonging to the classifications you listed in (a) combine, what type of compound are they likely to form: molecular or ionic? (You may circle your answer.)
c. How can you tell from the formula of a compound if it is a binary molecular compound? Hint: What kind of elements are in a binary molecular compound.
3. a. How do the prefixes "mono-", "di-", "tri-", etc. in the names in the Model help the reader?
b. Pertaining specifically to the family of nitrogen oxides, explain why it is so important to use the prefixes when naming a compound?
4. From the Model, what is the apparent rule for using the prefix "mono-"? When is it not used?
5. With what suffix does the name of a binary compound always end?
6. For each of the binary compounds presented in the Model, find the relative positions of the two elements on the Periodic Table. Based on the positions of any two nonmetals/metalloids on the Periodic Table, state a general rule that is used to determine which element's name is written first in the compound's name. For example, NO is "nitrogen monoxide". Its formula is not "ON" nor is it called "oxygen mononitride". Why?
\qquad

Exercises

Provide the correct unambiguous name for each of the following binary molecular compounds.
7. $\mathrm{Br}_{3} \mathrm{O}_{8}$
10. AsF_{5}
8. $\mathrm{I}_{4} \mathrm{O}_{9}$ \qquad
11. CO_{2}
9. ICl

Write the correct formulas for each of the following binary molecular compounds:
12. dichlorine monoxide
13. sulfur trioxide
14. tetraphosphorous heptasulfide
\qquad
15. disilicon hexaiodide
16. selenium tetrabromide
17. bromine pentafluoride
\qquad
18. Like the nitrogen oxides, there is a "family" of sulfur fluorides: $\mathrm{S}_{2} \mathrm{~F}_{2}, \mathrm{SF}_{4}, \mathrm{SF}_{6}$, and $\mathrm{S}_{2} \mathrm{~F}_{10}$. Attempt to sketch a representation of each one (use those in the Model as a guide) and next to each representation provide the unambiguous name for the four sulfur fluorides.
a. $\mathrm{S}_{2} \mathrm{~F}_{2}$
b. SF_{4}
c. SF_{6}
d. $\mathrm{S}_{2} \mathrm{~F}_{10}$
\qquad
VII. Atomic Mass and Moles - Start Time: \qquad End Time: \qquad

Average Atomic Mass

A single atom is extremely small. The typical atom will have a mass of approximately $3 \times 10^{-23} \mathrm{~g}$. The smallest mass that the standard analytical balance can weigh reliably is 0.0001 g , which corresponds to roughly 3 quintillion (i.e., 3,000,000,000,000,000,000) atoms. Therefore, we define

$$
1 \mathrm{amu}=1.6606 \times 10^{-24} \mathrm{~g}
$$

to make it convenient to discuss the mass of very small particles in terms of atomic mass units (amu) rather than very tiny fractions of what can be weighed out on a balance.

An overwhelming majority of the elements that are encountered in the chemistry lab have two or more naturallyoccurring isotopes. If an element has more than one naturally-occurring isotope, then a random sample of the element should be assumed to exist as a mixture of these isotopes that are found in Nature.

Carbon has been found to be $98.89 \%{ }^{12} \mathrm{C}$ and $1.11 \%{ }^{13} \mathrm{C}$. Carbon-12 (chosen by the scientific community to define the amu) has an isotopic mass of exactly 12 amu (i.e., one ${ }^{12} \mathrm{C}$ atom weighs 12 amu) and that of ${ }^{13} \mathrm{C}$ is 13.0034 amu.

It is assumed that the composition of a sample of an element (in terms of the percent natural abundances of each of the element's isotopes) is the same everywhere on Earth. Therefore, in any sample containing carbon (be it a diamond or an organic compound containing carbon in addition to other elements), 98.89% of the carbon atoms in that sample will be $\mathrm{C}-12$ (each weighing 12 amu) and the remaining 1.11% of the carbon atoms will be $\mathrm{C}-13$ (each weighing 13.0034 amu), regardless of where the sample was taken from.

We now determine the average atomic mass of carbon in a manner that is organized and easy to follow (i.e., by tabulating what we know and what we can derive from our given information):

Isotope	Isotopic Mass (amu)	Percent Natural Abundance	Mass Contribution (amu)
${ }^{12} \mathrm{C}$	12.0000	98.89	$(12.0000 \times 0.9889)=11.87$
${ }^{13} \mathrm{C}$	13.0034	1.11	$(13.0034 \times 0.0111)=0.144$
			Average Mass (amu) $(11.87+0.144=) 12.01$

Key Questions

1. If you were able to select one carbon atom at random, what is the mass of that atom most likely to be (in amu)? Why?
\qquad
2. Yes or No (Circle your answer.): Does any carbon atom anywhere in the Universe have a mass equivalent to the average atomic mass of carbon on Earth? Briefly explain your reasoning.
3. a. What is the mass in amu of ten sextillion (i.e., 10^{22}) Carbon-12 atoms? Show your work and circle your answer.
b. What is the mass in grams of ten sextillion Carbon-12 atoms? Show your work and circle your answer.
c. What is the mass of ten sextillion Carbon-13 atoms (ing)? Show your work and circle your answer.
4. If a diamond consisting of ten sextillion "randomly-selected" carbon atoms (roughly a "one-karat diamond") were placed on an analytical balance, the balance would read (circle your answer and briefly explain your reasoning below):
a.) slightly less than 0.1993 g
d.) slightly less than 0.2159 g
b.) 0.1993 g
e.) 0.2159 g
c.) slightly more than 0.1993 g
f.) slightly more than 0.2159 g

Explanation:

Exercises

5. Europium has two naturally-occurring isotopes. Use the data in the table below to determine the average atomic mass of europium to the nearest 0.1 amu. Hint: Complete the table similarly to what is shown for carbon in the Model.

Isotope	Isotopic Mass (amu)	Percent Natural Abundance			
151 Eu	150.92	47.8			
153 Eu	152.92	52.2			
	Average atomic mass (amu)				

\qquad
6. 20.5% of germanium is Ge-70, which has an isotopic mass of $69.924 \mathrm{amu} .27 .4 \%$ of germanium is Ge-72, which has an isotopic mass of $71.922 \mathrm{amu} .7 .8 \%$ of germanium is $\mathrm{Ge}-73$, which has an isotopic mass of 72.923 amu . 36.5% of germanium is Ge-74, which has an isotopic mass of 73.921 amu . The rest of naturally-occurring germanium is $\mathrm{Ge}-76$, which has an isotopic mass of 75.921 amu . Use this data to calculate the average atomic mass of germanium to the nearest 0.01 amu . Hint: Complete the table below to help you organize the information given.

7. Copper has two naturally occurring isotopes, ${ }^{63} \mathrm{Cu}$ (isotopic mass 62.9396 amu) and ${ }^{65} \mathrm{Cu}$ (isotopic mass 64.9278 amu). If copper has an atomic mass of 63.546 amu , what is the percent abundance of each element? Show your work and circle your answer.

Key Questions

8. a. Look at the Periodic Table. How do the numbers under the symbols for carbon, europium, and germanium compare to 12.01 amu and the values you determined in Exercises 5 and 6 respectively?
b. What is the number under the symbol of an element on the Periodic Table?
\qquad
```
1 dozen items = 12 items 1 gross of items = 144 items
1 score of items = 20 items 1 mole of items=6.022 u 1023 items
```


Exercises

9. a. One often buys donuts by the dozen. How many donuts are there in a dozen donuts?
b. Abraham Lincoln started his Gettysburg Address with the words, "Four score and seven years ago..." How many years are there in a score of years?
c. Cheap plastic jewelry is very often sold "by the gross". How many plastic necklaces are there in a gross of necklaces?
d. A mole of liquid water occupies a volume of approximately 18 mL . How many water molecules are in a mole of water molecules?
10. a. 1 mol of items is 6.022×10^{23} of those items. 1 carbon atom weighs on average 12.01 amu .1 amu is equivalent to $1.6606 \times 10^{-24} \mathrm{~g}$. Use the Factor-Label Method to calculate the mass (in grams) of a randomlychosen sample of carbon containing 1 mole of carbon atoms. Circle your answer.
b. Look at the Periodic Table. How does the number under the symbol for carbon compare to the number of grams you determined in Question 10a?
c. What is the relationship between the units "atomic mass units" and "grams per mole"?
\qquad
VIII. The Mole Concept - Start Time: \qquad End Time: \qquad

Important!! For answers that involve a calculation you must show your work neatly using dimensional analysis with correct significant figures and units to receive full credit. No work, no credit. Report numerical answers to the correct number of significant figures. CIRCLE ALL NUMERICAL RESPONSES.

1. The atomic mass of Cl is 35.45 amu and that of Al is 26.98 amu . What are the masses in grams of...
a.) 2.0 mol of Al atoms? Circle your answer.
b.) 3.0 mol of Cl atoms? Circle your answer.
c.) 3.0 mol chlorine molecules? Circle your answer.
2. a.) Why might the expression " 1.00 mol of nitrogen" be confusing?
b.) What change would remove any uncertainty?
c.) For what other elements might a similar confusion exist? Why?
3. Each of the following balances weighs the indicated number of atoms of two elements. Which element, left, right or neither, has...
a.) the higher molar mass on balance " a "?
b.) more atoms per gram on balance " b "?
c.) fewer atoms per gram on balance " c "?
d.) more atoms per mole on balance "d"?

\qquad
4. You need to calculate the number of P_{4} molecules that can form from 2.5 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Explain how you would proceed, that is, write a solution "plan" without doing any calculations.
5. Calculate the molar mass of each of the following to two decimal places.
a.) Dinitrogen tetroxide Circle your answer.
b.) Calcium acetate Circle your answer.
6. Calculate each of the following quantities:
a.) The number of moles of chlorine atoms in 0.0425 g of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. Circle your answer.
b.) The total number of ions in 38.1 g calcium fluoride, CaF_{2}. Circle your answer.
c.) Mass in grams of 3.52 mol of chromium (III) sulfate decahydrate. Circle your answer.
d.) Mass in grams of 9.64×10^{24} molecules of dichlorine heptaoxide. Circle your answer.
\qquad
e.) Number of moles and formula units in 56.2 g of lithium sulfate. Circle your answer.
f.) Number of lithium ions, sulfate ions, S atoms and O atoms in the mass in the previous problem (i.e. in 56.2 g of lithium sulfate) Circle each answer.

Li ${ }^{+}$ions:

S atoms:

Oxygen atoms:
7. Calculate the mass \% of iodine, I, in strontium periodate. Circle your answer.
8. Oxygen is required for metabolic combustion of foods. Calculate the number of atoms in 38.0 g of oxygen gas, the amount absorbed into the blood from the lungs at rest in 15 minutes. Circle your answer.
\qquad
9. Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, is widely used in liquid form as a fuel for barbecue grills and camp stoves. For 75.3 g of propane, calculate the following:
a.) the moles of the compound in the sample Circle your answer.
b.) the grams of carbon in the sample Circle your answer.
10. The effectiveness of a nitrogen fertilizer is determined mainly by the $\% \mathrm{~N}$. Calculate the $\% \mathrm{~N}$ in each fertilizer and then rank them in terms of their effectiveness (i.e by their \%N).
a. potassium nitrate Circle your answer.
b. ammonium nitrate Circle your answer.
c. ammonium sulfate Circle your answer.
d. urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ Circle your answer.

Ranking by \% N:

\qquad
\qquad
IX. Balancing Redox Reactions - Start Time:

End Time: \qquad
Oxidation-reduction or Redox reactions involve the transfer of one or more electrons from one chemical species to another. Redox reactions are involved in the corrosion of metals, the combustion of fuels, the generation of electricity from batteries and many biological processes including cellular respiration and photosynthesis. An understanding of redox chemistry is essential in the design of new kinds of batteries, increasing efficiency in fuel combustion, the prevention of corrosion, etc.

The oxidation number of an atom is the "apparent" charge the atom would have if each of its bonding electrons were assigned to the more electronegative atom in each bond. Oxidation numbers are useful in determining the substance oxidized (L.E.O. = Loss of Electron(s) is Oxidation) and the substance reduced (G.E.R. = Gain of Electron(s) is Reduction). Hence, the substance that is oxidized loses electrons and therefore serves as a reducing agent since it provides electrons to another atom thereby causing that atom to be reduced. The species being reduced serves as the oxidizing agent because it removes electrons from another substance, thereby causing that substance to be oxidized.

Rules to Assign Oxidation Numbers

1. The oxidation number of any uncombined element is zero.
2. The oxidation number of a monatomic ion equal the charge on the ion.
3. The more electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
4. Oxygen has an oxidation number of -2 unless it is combined with F, when it is usually +2 , or it is in a peroxide, when it is -1 .
5. The oxidation state of hydrogen in most of its compounds is +1 unless it combined with a metal, in which case it is -1 .
6. In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation number of $+1,+2$, and +3 , respectively
7. The sum of the oxidation numbers of all atoms in a neutral compound is zero.
8. The sum of the oxidation number of all atoms in a polyatomic ion equals the charge of the ion.
\qquad

Key Questions

1. The substances oxidized and reduced may not be obvious in the following redox reaction:

$$
8 \mathrm{H}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+3 \mathrm{SO}_{3}^{2-}(a q) \rightarrow 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O}(I)
$$

a. Write the oxidation numbers above each atomic symbol on the left and right sides of the reaction above.
b. Does the oxidation number of any atom increase? If so, which one and what is the change?
c. Does the oxidation number of any atom decrease? If so, which one and what is the change?
d. Which species is being oxidized (oxidation number is increasing)? \qquad
e. Which species is being reduced (oxidation number is decreasing)? \qquad

Exercises

2. Write the oxidation number above each symbol in the following compounds or ions.
a. KBr
b. BrF_{3}
c. HBrO_{3}
d. CBr_{4}
e. $\mathrm{MnO}_{4}{ }^{1-}$
f. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
g. KMnO_{4}
3. Assign oxidation numbers to each atom in the following reaction and then identify the oxidizing agent, reducing agent, the substance oxidized and the substance reduced.

$$
\mathrm{NO}_{3}{ }^{1-}(a q)+4 \mathrm{Zn}(s)+7 \mathrm{OH}^{1-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 4 \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(a q)+\mathrm{NH}_{3}(a q)
$$

Oxidizing agent: \qquad

Substance oxidized: \qquad

Reducing agent: \qquad

Substance reduced: \qquad
\qquad

X. Chemical Nomenclature Flow Chart - Ungraded

Inorganic Nomenclature Flow Chart

Case 1: lonic compounds containing monatomic ions (i.e. ions that can only have one charge)

- Name of Compound = name of metal + name of non-metal w/ -ide suffix or name of polyatomic ion. No prefixes are used!
- e.g. $\mathrm{NaF}=$ sodium fluoride; $\mathrm{Na}_{3} \mathrm{PO}_{4}=$ sodium phosphate; $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=$ ammonium phosphate

Case 2: Ionic compounds containing a metal that can form more than one ion

- Name of Compound = name of metal, followed by charge of metal in Roman numerals in parentheses, followed by name of non-metal w/ -ide suffix or name of polyatomic ion. No prefixes are used!
- e.g. $\mathrm{PbCl}_{2}=$ lead (II) chloride; $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=\operatorname{copper}$ (II) nitrate

Case 3: Binary molecular compounds

- Name of Compound = name of first element + name of second element with -ide suffix.
- Use prefixes (mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, nona-, deca-) to indicate the number of atoms.
- The mono prefix is not used with the first element.
- e.g. $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{2}=$ nitrogen dioxide; $\mathrm{N}_{2} \mathrm{O}=$ dinitrogen monoxide; $\mathrm{P}_{2} \mathrm{O}_{5}=$ diphosphorous pentoxide
\qquad

Case 4: Binary acid solutions (i.e. binary acids dissolved in water = binary acids in aqueous solution)

- Name of Compound = hydro + name of halogen w/ -ic suffix e.g. $\mathrm{HF}_{(\mathrm{aq})}=$ hydrofluoric acid;
$\mathrm{HCl}_{(\mathrm{aq})}=$ hydrochloric acid
- Unless stated otherwise assume the formula of a binary acid is for the acid dissolved in water. e.g. assume $\mathrm{HCl}=\mathrm{HCl}_{(\mathrm{aq})}$

Naming Oxoacids (i.e. compound with the general formula $\mathrm{H}_{\mathrm{x}} \mathrm{MO}_{y}$, where $\mathrm{M}=$ nonmetal)
The name of an oxoacid is based on the name of the polyatomic ion from which the acid is derived.
Case 5: -ate \rightarrow-ic
If the name of the polyatomic ion ends in "-ate," the name of the corresponding acid ends in "-ic acid."

```
Polyatomic ion (-ate)
Acid (-ic)
sulfate = SO_ '2- 
Chlorate = ClO}\mp@subsup{3}{}{1-}\quad->\quad\mp@subsup{\textrm{HClO}}{3}{}=\mathrm{ chloric acid
```

Case 6: -ite \rightarrow-ous
If the name of the polyatomic ion ends in "-ite," the name of the corresponding acid ends in "-ous acid."

Polyatomic ion (-ite)	\rightarrow	Acid (-ous)
sulfite $=\mathrm{SO}_{3}{ }^{2-}$	\rightarrow	$\mathrm{H}_{2} \mathrm{SO}_{3}=$ sulfurous acid
Chlorite $=\mathrm{ClO}^{1-}$	\rightarrow	$\mathrm{HClO} 2=$ chlorous acid

Practice Exercises

The following questions are for practice and will not be graded. See/email me if you want your answers checked.

1. Write the formula for the following polyatomic ions:
a. Ammonium
e. Acetate
i. Sulfate
b. Hydroxide
f. Cyanide
j. Phosphate
c. Nitrite
g. Carbonate
d. Nitrate
h. Sulfite
2. Write the formula fo the ionic compound that forms when the following ions combine:
a. Na^{+}and Cl^{-}
b. Na^{+}and O^{2-}
c. Cu^{2+} and OH^{-}
d. Ca^{2+} and $\mathrm{CO}_{3}{ }^{2-}$
e. Sr^{2+} and $\mathrm{PO}_{4}{ }^{3-}$
f. Al^{3+} and $\mathrm{NO}_{3}{ }^{-}$
3. Name the following ionic compounds.
a. MgCl_{2}
e. $\mathrm{Ag}_{3} \mathrm{PO}_{4}$
i. $\quad \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b. CaO
f. $\mathrm{NH}_{4} \mathrm{Cl}$
j. Nal
c. $\mathrm{Cu}_{3} \mathrm{~N}_{2}$
g. NzSO_{4}
d. AuF_{3}
h. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
4. Write the formula for the following ionic compounds.
a. Lithium bromide
f. Gold (I) phosphate
b. Calcium carbonate
g. Cobalt (III) oxide
c. Beryllium nitride
h. Calcium acetate
d. Potassium nitrate
i. Iron (III) cyanide
e. Copper (II) sulfite
j. Aluminum hydroxide
\qquad
5. Name the following ionic compounds:
a. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
b. MgBr_{2}
c. $\mathrm{Au}_{2} \mathrm{~S}$
d. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
e. $\mathrm{K}_{4} \mathrm{C}$
f. ZnCl_{2}
g. $\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
h. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
i. CaS
6. Write the formula for the following ionic compounds
a. Iron (II) acetate
b. Copper (I) oxide
c. Gold (III) nitride
d. Calcium phosphate
e. Potassium sulfate
f. Ruthenium (II) nitrate
g. Sodium chloride
h. Lithium sulfate
i. Beryllium sulfite
j. Aluminum carbonate
7. Write the name of the following covalent compounds:
a. $\mathrm{N}_{2} \mathrm{O}$
e. $\mathrm{P}_{2} \mathrm{~S}$
b. CO_{2}
f. NBr_{3}
c. CO
g. IBr
d. NO
h. CF_{4}
8. Write the formula for the following covalent compounds
a. Nitrogen trisulfide
b. Oxygen difluoride
c. Diphosphorous pentoxide
d. Sulfur dichloride
e. Nitrogen triiodide
9. Write the name for the following acids
a. $\mathrm{N}_{5} \mathrm{SO}_{4}$
d. HNO_{3}
b. HCl
e. HF
c. HBr
f. $\mathrm{H}_{3} \mathrm{PO}_{4}$
f. Disulfur tetrachloride
g. Dicarbon hexabromide
h. Tricarbon octafluoride
i. Dihydrogen monoxide
j. Tetrahydrogen monocarbide
i. $\quad P_{2} F_{6}$
j. $\quad \mathrm{C}_{2} \mathrm{~S}_{4}$
\qquad
10. Mixed Bag - give the formula for the following compounds
a. Gold (III) sulfide
f. Iron (III) acetate
b. Hydrofluoric acid
g. Silver nitrate
c. Aluminum oxide
h. Potassium phosphate
d. Magnesium sulfate
i. Dicarbon hexafluoride
e. Nitric acid
11. Hydrates - name the following compounds (normal nomenclature rules and then add a covalent prefix to the word hydrate i.e. $\mathrm{AlCl}_{3} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ is aluminum chloride hexahydrate)
a. $\mathrm{CaSO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{Ma}(\mathrm{OH})_{2} \bullet 8 \mathrm{H}_{2} \mathrm{O}$
12. Hydrates - give the formula for the following compounds (put a \bullet between the compound and the water molecules)
a. Copper (III) nitrate trihydrate
d. Cobalt (II) sulfate heptahydrate
b. Barium chloride dihydrate
e. Iron (III) sulfate pentahydrate
c. Cobalt (II) nitrate hexahydrate
XI. Elements and Symbols to Memorize

It is expected that you know the symbols and names (spelling too!) for the following elements from your study in a previous chemistry class. You will be tested on these symbols on the first AP Chem exam.

ELEMENT	SYMBOL
Aluminum	Al
Antimony	Sb
Argon	Ar
Arsenic	As
Barium	Ba
Beryllium	Be
Bismuth	Bi
Boron	B
Bromine	Br
Cadmium	Cd
Calcium	Ca
Carbon	C
Chlorine	Cl

ELEMENT	SYMBOL
Chromium	Cr
Cobalt	Co
Copper	Cu
Fluorine	F
Gold	Au
Helium	He
Hydrogen	H
Iodine	I
Iron	Fe
Krypton	Kr
Lead	Pb
Lithium	Li
Magnesium	Mg

ELEMENT	SYMBOL
Manganese	Mn
Mercury	Hg
Molybdenum	Mo
Neon	Ne
Nickel	Ni
Nitrogen	N
Oxygen	Pt
Phosphorous	Pu
Platinum	K
Plutonium	Ra
Potassium	Rn
Radium	Radon

ELEMENT	SYMBOL
Selenium	Se
Silicon	Si
Silver	Ag
Sodium	Na
Strontium	Sr
Sulfur	S
Tin	Sn
Titanium	Ti
Tungsten	W
Uranium	U
Vanadium	V
Xenon	Xe
Zinc	Zn

\qquad

XII．Ion Sheet to Memorize（Group IA are 1＋，Group IIA are 2＋，Group VIA are 2－，Group VIIA are 1－）
You should also know polyatomic ion rules（e．g． $\mathrm{XO}_{4}=$ per＿＿ate， $\mathrm{XO}_{3}=$＿ate， $\mathrm{XO}_{2}{ }^{-}=$＿ite， $\mathrm{XO}^{-}=$hypo＿ite）

$\begin{aligned} & N \\ & \stackrel{\rightharpoonup}{*} \\ & \hline \end{aligned}$	$\begin{aligned} & -\overrightarrow{3} \\ & \vdots \\ & B \\ & B \end{aligned}$			3	$\begin{aligned} & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\,\right.$									V^{N}
	\cong	$\underset{i}{z}$	$\underset{\sim}{T}$	$\underset{\sim}{3}$	边	苛	\％	E_{7}	8_{7}	\bigcirc	\bigcirc				

	${ }^{\sim}$
－	

$\left\lvert\, \begin{aligned} & \frac{\overline{3}}{0} \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & \frac{訁}{0} \\ & \hline 0 \end{aligned}\right.$						ω_{1}
$\stackrel{\square}{4}$	0	z_{ψ}		$\stackrel{c}{0}_{0}^{0}$	｜r	

\qquad

XIII. General Chemistry Review - Graded on Completion

The following questions are just covering topics that should be easily recalled. Please try this section without looking at the previous parts of this packet or any other notes that you may have. There is a periodic table and a list of equations at the end of this packet; you can use that if you need to. If, after you have finished, you would like to go back and make sure you got the correct answers, feel free to do that.
\qquad 1. Consider the following selected postulates of Dalton's atomic theory:
I. Each element is composed of extremely small particles called atoms.
II. Atoms are indivisible

IIII. Atoms of a given element are identical.
IV. Atoms of different elements are different and have different properties.

Which of the postulates is/are no longer considered valid?
a. I and II
d. III only
b. II only
e. III and IV
c. II and III
\qquad 2. There are \qquad electrons, \qquad protons, and \qquad neutrons in an atom of $\frac{132}{54} X$.
a. $132,132,54$
d. $54,54,78$
b. $54,54,132$
e. $78,78,132$
c. $78,78,54$
3. Which pair of atoms constitutes a pair of isotopes of the same element?
a. $\frac{14}{6} X \quad \frac{14}{7} X$
b. $\frac{14}{6} X \quad \frac{12}{6} X$
c. $\quad \frac{17}{9} X \quad \frac{17}{8} X$
d. $\frac{19}{10} X \quad \frac{19}{9} X$
e. $\frac{20}{10} X \quad \frac{21}{11} X$
4. The element X has three naturally occurring isotopes. The masses (amu) and \% abundance of the isotopes are given in the table below. The average atomic mass of the element is \qquad amu.

Isotope	Abundance	Mass
221 X	74.22	220.9
220 X	12.78	220.0
218 X	13.00	218.1

a. 219.7
b. 220.4
c. 220.42
d. 218.5
e. 221.0
\qquad 5. Silver has two naturally occurring isotopes with the following atomic masses: ${ }^{107} \mathrm{Ag}(106.90509 \mathrm{amu})$ and ${ }^{109} \mathrm{Ag}$ (108.9047). The average atomic mass of silver is 107.8682 amu . The fractional abundance of the lighter of the two isotopes is \qquad -.
a. 0.24221
b. 0.48168
c. 0.51835
d. 0.75783
e. 0.90474
\qquad
\qquad 6. Which of the following conclusions can be drawn from J.J. Thomson's plum pudding model?
a. Atoms contain electrons.
b. Practically all the mass of an atom is contained in its nucleus.
c. Atoms contain protons, neutrons, and electrons.
d. Atoms have a positively charged nucleus surrounded by an electron cloud.
e. No two electrons in one atom can have the same four quantum numbers.

Questions 7-9 use the following answer choices:
a. Wave nature of matter
b. Spectral lines
c. Quantum numbers
d. Bohr model
\qquad 7. Explained spectral lines by postulating that electrons were only able to exist in discrete orbits of differing energies around the atom.
8. Describes the location of an electron series of possible quantum states that are allowed, some of which are favored energetically for certain electrons over others.
9. Caused by electrons emitting energy as they transitioned from one specific orbit to another.
10. Which of the following is a correct interpretation of the results of Rutherford's experiments?
a. Atoms have equal numbers of positive and negative charges.
b. Electrons in atoms are arranged in shells.
c. Neutrons are at the center of an atom.
d. Neutrons and protons in atoms have nearly equal mass.
e. The positive charge of an atom is concentrated in a small region.
11. The energy of a photon of light is \qquad proportional to its frequency and \qquad proportional to its wavelength.
a. Directly, directly
d. Directly, inversely
b. Inversely, inversely
e. Inversely, not
c. Inversely, directly
12. What is the wavelength of light that has a frequency of $3.22 \times 10^{14} \mathrm{~s}^{-1}$?
a. $\quad 932 \mathrm{~nm}$
b. 649 nm
c. $\quad 9.66 \times 10^{22} \mathrm{~nm}$
d. $\quad 9.32 \times 10^{-7} \mathrm{~nm}$
e. $\quad 1.07 \times 10^{6} \mathrm{~nm}$
13. The energy of a photon that has a wavelength of 9.0 m is \qquad J.
a. 2.2×10^{-26}
b. 4.5×10^{25}
c. 6.0×10^{-23}
d. 2.7×10^{9}
e. 4.5×10^{-25}
\qquad
\qquad 14. Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
a. O, S
b. C, N
c. K, Ca
d. H, He
e. Si, P
15. An element that appears in the lower left corner of the periodic table is \qquad .
a. Either a metal or a metalloid
d. Definitely a non-metal
b. Definitely a medal
e. Definitely a metalloid
c. Either a metalloid or a non-metal
16. The elements in groups 1,17 , and 18 are called \qquad respectively.
a. Alkaline earth metals, halogens, and chalcogens
b. Alkali metals, chalcogens, and halogens
c. Alkali metals, halogens, and noble gases
d. Alkaline earth metals, transition metals, and halogens
e. Halogens, transition metals
17. Which one of the following is most likely to lose electrons when forming an ion?
a. F
b. P
c. Rh
d. S
e. N
18. When a metal and a nonmetal react, the \qquad tends to lose electrons and the \qquad tends to gain electrons.
a. Metal, metal
d. Nonmetal, metal
b. Nonmetal, nonmetal
e. None of the above (these elements
c. Metal, nonmetal share electrons)
19. \qquad typically form ions with a 2+ charge.
a. Alkaline earth metals
d. Alkali metals
b. Halogens
e. Transition metals
c. Chalcogens
20. What is the ratio of hydrogen to oxygen atoms in the mineral cacoxenite, $\mathrm{Fe}_{4}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{3} \bullet 12 \mathrm{H}_{2} \mathrm{O}$?
a. $27: 19$
d. 1:1
b. $15: 27$
e. 27:25
c. $15: 24$
21. Which of the following compounds would you expect to be ionic?
a. SF_{6}
b. $\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{H}_{2} \mathrm{O}_{2}$
d. NH_{3}
e. CaO
\qquad
\qquad 22. The charge on the iron ion in the salt $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is \qquad .
a. +1
b. +2
c. +3
d. -5
e. -6
23. What is the formula of the compound strontium nitride?
a. SrN
b. $\mathrm{Sr}_{3} \mathrm{~N}_{2}$
c. $\quad \mathrm{Sr}_{2} \mathrm{~N}_{3}$
d. SrN_{2}
e. SrN_{3}
24. Which of the following is the nitride ion?
a. Na^{+}
b. $\mathrm{NO}_{3}{ }^{-}$
c. $\mathrm{NO}_{2}{ }^{-}$
d. $\mathrm{NH}_{4}{ }^{+}$
e. N^{3-}
25. What is the correct formula for chromium (III) oxide?
a. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
b. CrO_{3}
c. $\mathrm{Cr}_{3} \mathrm{O}_{2}$
d. $\mathrm{Cr}_{3} \mathrm{O}$
e. $\mathrm{Cr}_{2} \mathrm{O}_{4}$
26. What is the correct formula for ammonium sulfide?
a. $\mathrm{NH}_{4} \mathrm{SO}_{3}$
b. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$
c. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
d. $\mathrm{NH}_{3} \mathrm{~S}$
e. $\mathrm{N}_{2} \mathrm{~S}_{3}$
27. Which formula is not correctly paired with its compound name?
a. FeSO_{4}
iron (II) sulfate
d. FeSO_{3}
b. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
iron (III) sulfite
e. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
iron (II) sulfite
c. FeS
iron (II) sulfide
28. The formula for the compound formed between aluminum ions and phosphate ions is \qquad .
a. $\mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{3}$
d. $\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
b. AlPO_{4}
e. AIP
c. $\mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$
29. Barium reacts with a polyatomic ion to form a compound with the general formula $B a_{3}(X)_{2}$. What would be the most likely formula for the compound formed between sodium and the polyatomic ion, X ?
a. NaX
b. $\quad \mathrm{Na}_{2} \mathrm{X}$
c. $\quad \mathrm{Na}_{2}(\mathrm{X})_{2}$
d. $\mathrm{Na}_{3} \mathrm{X}$
e. $\mathrm{Na}_{3}(\mathrm{X})_{2}$
\qquad
\qquad 30. Which one of the following is true concerning the makeup of the simplest unit of magnesium chloride?
a. 1 magnesium atom and 1 diatomic chlorine molecule
b. 1 magnesium chloride molecule
c. 1 magnesium atom and 2 chlorine atoms
d. 1 positive ion and 2 negative ions
e. 2 positive ions and 1 negative ion
31. The molar mass of ammonium phosphate is
a. $\quad 116.03 \mathrm{~g} / \mathrm{mol}$
b. $\quad 121.07 \mathrm{~g} / \mathrm{mol}$
c. $\quad 149.09 \mathrm{~g} / \mathrm{mol}$
d. $\quad 155.42 \mathrm{~g} / \mathrm{mol}$
e. $242.01 \mathrm{~g} / \mathrm{mol}$
32. One mole of \qquad contains the largest number of atoms.
a. S_{8}
b. $\mathrm{C}_{10} \mathrm{H}_{8}$
c. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
d. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
e. Cl_{2}
33. A 30.5-gram sample of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ contains \qquad mol of glucose.
a. 0.424
b. 0.169
c. 5.90
d. 2.36
e. 0.136
34. How many moles of oxygen are in 1.08 moles of calcium nitrate?
a. $\quad 7.55$ moles
b. $\quad 1.43$ moles
c. $\quad 6.48$ moles
d. 33.8 moles
e. 1.16×10^{23} moles
35. How many grams of calcium nitrate contains 24 grams of oxygen atoms?
a. 164 grams
d. 50. grams
b. 96 grams
e. 41 grams
c. 62 grams
36. How many molecules of methane, CH_{4}, are in 48.2 g of methane?
a. $\quad 5.00 \times 10^{24}$ molecules
b. 3.00 molecules
c. 2.90×10^{25} molecules
d. 1.81×10^{24} molecules
e. 4.00 molecules
37. What number of moles of diatomic oxygen is needed to produce 14.2 grams of tetraphosphorous decoxide from singlet phosphorous in a synthesis reaction?
a. $\quad 0.0500$ moles
b. 0.0625 moles
c. $\quad 0.125$ moles
d. $\quad 0.250$ moles
e. 0.500 moles
\qquad
\qquad 38. Which of the following gas samples contains the greatest mass of gas molecules (assume ideal conditions)?
a. $\quad 1.0 \mathrm{~L}$ of He at STP
d. 1.0 L of H_{2} at STP
b. $\quad 1.0 \mathrm{~L}$ of Xe at STP
e. All three are the same.
c. 1.0 L of F_{2} at STP
39. The molarity of an aqueous solution containing 75.3 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right) \mathrm{in} 35.5 \mathrm{~mL}$ of solution is \qquad _.
a. $\quad 1.85 \mathrm{M}$
b. $\quad 2.12 \mathrm{M}$
c. $\quad 0.197 \mathrm{M}$
d. 3.52 M
e. $\quad 11.8 \mathrm{M}$
40. How many mililiters of 0.123 M NaOH solution contain 25.0 g of NaOH (molar mass $=40.00 \mathrm{~g} / \mathrm{mol}$)?
a. $\quad 50.80 \mathrm{~mL}$
b. 625 mL
c. $\quad 5080 \mathrm{~mL}$
d. $\quad 7.69 \mathrm{~mL}$
e. $\quad 12.7 \mathrm{~mL}$
41. What is the total concentration of ions in 0.0360 M solution of sodium carbonate?
a. $\quad 0.0900 \mathrm{M}$
b. $\quad 0.108 \mathrm{M}$
c. $\quad 0.0120 \mathrm{M}$
d. 0.0720 M
e. $\quad 0.0360 \mathrm{M}$
42. Radioactive americium- 241 is used in household smoke detectors and in bone mineral analysis.
a. Give the number of electrons, protons, and neutrons in an atom of americium-241.
b. Write the proper nuclide symbol.
43. What characteristics do atoms of carbon-12, carbon-13, and carbon-14 have in common? In what ways are they different?
44. Identify the isotope that has atoms with
a. $\mathbf{1 1 7}$ neutrons, 77 protons, and 77 electrons
b. 30 neutrons, 28 protons, and 28 electrons
45. How did the discovery of isotopes conflict with Dalton's atomic theory?
46. The average mass of any large number of atoms of a given element is always the same for a given element. Explain.
\qquad
47. Naturally occurring boron is 19.9% B-10 (10.01294 u) and 80.1% B-11 (11.0093 u). Calculate the average atomic mass.
48. Uranium has an atomic mass equal to 238.0289 amu . It consists of two isotopes: uranium-235 (2335.044 u) and uranium-238 (238.051 u). Calculate the $\%$ abundance of the uranium- 235 isotope.
49. How did Rutherford interpret the deflection of α-particles in his gold foil experiment? Did these findings support or disprove the plum pudding model of the atom? Explain.
50. How did Bohr's model of the atom explain the existence of line spectra? How are spectral lines produced?
51. What is the energy of a photon that has a wavelength of $8.33 \times 10^{-6} \mathrm{~m}$?
52. What is the wavelength of a photon that has an energy of $5.25 \times 10^{-19} \mathrm{~J}$?
53. How does the quantum model describe the location of an electron?
54. What accounts for similarities of chemical properties for elements in the same group/family?
55. Provide the group names for the elements in Group 1, 2, 17, and 18. Provide an example of an element in each of the above groups.
\qquad
56. Identify the following elements:
a. A halogen in the $3^{\text {rd }}$ period
b. A metalloid
c. An atom in the $4^{\text {th }}$ period that forms a stable ion with a +1 charge
57. Locate the following elements on the periodic table and indicate which orbital type is occupied by its valence electrons
a. Lithium
b. Silicon
c. Copper
58. What ions are the following elements likely to form?
a. Oxygen
b. Sodium
c. Bromine
59. A main group element in Period 4 forms the molecule compound $\mathrm{H}_{2} \mathrm{E}$ and the ionic compound $\mathrm{Na}_{2} \mathrm{E}$.
a. To which group does the element belong?
b. Write the name and symbol of the element.
60. Write the formulas for the following binary ionic compounds.
a. Sodium sulfide
b. Cobalt (II) chloride
c. Lithium nitride
d. Tin (IV) oxide
61. Write the formulas for the following polyatomic ionic compounds
a. Barium nitrate
b. Calcium phosphite
c. Iron (II) chromate
d. Potassium permanganate
\qquad
62. How many total ions are present in the following ionic compounds?
a. Sodium acetate
b. Aluminum nitrate
c. Copper (II) chloride
63. The most common charge associate with silver in its compounds is +1 . Indicate the formulas you would expect for the ionic compounds formed between silver and the following elements.
a. Iodine
b. Sulfur
c. Phosphorous
64. Answer the following questions for a 3.50 g sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
a. What is the molar mass of this compound?
b. How many moles are in the sample?
c. How many hydrogen atoms are present in the sample?
65. Calculate the number of moles in 1.75 grams of sodium carbonate.
a. How many formula units are present?
b. How many sodium ions are present?
\qquad
66. Boron has two isotopes B-10 (19.9\%) and B-11 (80.1\%).
a. How many atoms of B would be present in a 50-gram sample of pure boron?
b. How many of these atoms are B-10?
67. A sample of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ contains 0.4662 moles of carbon atoms. How many moles of hydrogen atoms are in the sample?
68. Without doing any detailed calculations, rank the following samples in order of increasing number of atoms:
a. 3.0×10^{23} molecules $\mathrm{H}_{2} \mathrm{O}_{2}$
b. $2 \mathrm{~mol} \mathrm{CH}_{4}$
c. $32 \mathrm{~g} \mathrm{O}_{2}$
69. One component of smog is nitrogen monoxide, NO. A car produces about 8.0 g of this gas per day. What is the volume at STP?
70. A reaction produces 100 grams of water.
a. How many grams of H_{2} must have reacted to produce this amount of water if 1 mol of $\mathrm{H}_{2} \mathrm{O}$ is produced for every 1 mol of H_{2} that reacts?
b. Assuming H_{2} gas was the entire source of H and all of it was converted to water, how many L of H_{2} gas reacted, assuming the reaction was carried out at STP conditions?
c. How many molecules of H_{2} reacted, assuming the reaction was carried out at STP conditions?
\qquad
71. Calculate the following quantities for 343 mL of a $1.27 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution:
a. Moles of sodium sulfate
b. Grams of sodium sulfate required to prepare the above solution.
c. Moles of Na^{+}
72. What is the molarity of a $750 .-\mathrm{mL}$ solution containing 50.0 g of potassium chloride?
73. How many moles of hydroxide ions are present in $300 . \mathrm{mL}$ of a $2.50 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution?
a. What is the molarity of hydroxide ions?
\qquad

二 ゴ过过
\because 亩
¢ J ¢
OE
－E \％\％
－З
$\therefore \text { O }$

\qquad

AP ${ }^{\left({ }^{(1)}\right.}$ CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL	$=\operatorname{liter}(\mathrm{s})$, milliliter(s)	mm Hg	$=$ millimeters of mercury
g	$=\operatorname{gram}(\mathrm{s})$	J, kJ	$=$ joule(s), kilojoule(s)
nm	$=$ nanometer(s)	V	$=$ volt(s)
atm	$=\operatorname{atmosphere}(\mathrm{s})$	mol	$=$ mole(s)

ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
E & =\text { energy } \\
v & =\text { frequency } \\
\lambda & =\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{at} 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

Equilibrium Constants

K_{c} (molar concentrations)
K_{p} (gas pressures)
K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)

KINETICS

$$
\begin{aligned}
{[\mathrm{A}]_{t}-[\mathrm{A}]_{0} } & =-k t \\
\ln [\mathrm{~A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
k=\text { rate constant }
$$

$$
t=\text { time }
$$

$$
t_{1 / 2}=\text { half-life }
$$

\qquad

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles } \mathrm{A}}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{\boldsymbol{M}} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V} \\
K E_{\text {molecule }} & =\frac{1}{2} m v^{2}
\end{aligned}
$$

Molarity, $M=$ moles of solute per liter of solution

$$
A=\varepsilon b c
$$

$$
\begin{aligned}
P & =\text { pressure } \\
V & =\text { volume } \\
T & =\text { temperature } \\
n & =\text { number of moles } \\
m & =\text { mass } \\
M & =\text { molar mass } \\
D & =\text { density } \\
K E & =\text { kinetic energy } \\
v & =\text { velocity } \\
A & =\text { absorbance } \\
\varepsilon & =\text { molar absorptivity } \\
b & =\text { path length } \\
c & =\text { concentration }
\end{aligned}
$$

Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

$$
=62.36 \mathrm{~L}^{\text {torr mol }}{ }^{-1} \mathrm{~K}^{-1}
$$

$$
1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }
$$

$$
\mathrm{STP}=273.15 \mathrm{~K} \text { and } 1.0 \mathrm{~atm}
$$

Ideal gas at $\mathrm{STP}=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$

THERMODYNAMICS/ELECTROCHEMISTRY

$$
q=m c \Delta T
$$

$$
\Delta S^{\circ}=\sum S^{\circ} \text { products }-\sum S^{\circ} \text { reactants }
$$

$$
\Delta H^{\circ}=\sum \Delta H_{f}^{\circ} \text { products }-\sum \Delta H_{f}^{\circ} \text { reactants }
$$

$$
\Delta G^{\circ}=\sum \Delta G_{f}^{\circ} \text { products }-\sum \Delta G_{f}^{\circ} \text { reactants }
$$

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

$$
=-R T \ln K
$$

$$
=-n F E^{\circ}
$$

$$
I=\frac{q}{t}
$$

$$
E_{\text {cell }}=E_{\text {cell }}^{\mathrm{o}}-\frac{R T}{n F} \ln Q
$$

$$
q=\text { heat }
$$

$$
m=\text { mass }
$$

$$
c=\text { specific heat capacity }
$$

$$
T=\text { temperature }
$$

$$
S^{\circ}=\text { standard entropy }
$$

$$
H^{\circ}=\text { standard enthalpy }
$$

$$
G^{\circ}=\text { standard Gibbs free energy }
$$

$$
n=\text { number of moles }
$$

$$
E^{\circ}=\text { standard reduction potential }
$$

$$
I=\text { current (amperes) }
$$

$$
q=\text { charge (coulombs) }
$$

$$
t=\text { time (seconds) }
$$

$$
Q=\text { reaction quotient }
$$

Faraday's constant, $F=96,485$ coulombs per mole of electrons

$$
1 \text { volt }=\frac{1 \text { joule }}{1 \text { coulomb }}
$$

\qquad
Summer Packet

XVI. End of Packet Survey

Please fill in the following so that I know what I need to go over the first week.

For this section, please rate from 1-10 your understanding of the topic (1 being the least, 10 being the most)

For this section, please tell me how long you spent doing each section.

III	VII	hours	VIII
IV	hours	hours	
VI	hours	IX	hours
VI	hours		

Do you have access to a non-Chromebook computer at home? \qquad Yes \qquad No

Please include any other thoughts on the back of this sheet.

